133 research outputs found

    Analysis of the pathogenetic mechanisms underlying Hiv-induced vascular dysfunction

    Get PDF
    L'infezione da HIV-1 resta ancora oggi una delle principali problematiche nell'ambito della sanità mondiale, con circa 35 milioni di individui infetti in tutto il mondo. L'introduzione della terapia antiretrovirale combinata (cART) ha drasticamente modificato l’evoluzione di questa infezione, che da patologia a sviluppo terminale dopo alcuni anni dalla trasmissione, è diventata una patologia cronica con una lunga aspettativa di vita per i pazienti. Tuttavia, la cART non è in grado di eradicare l’infezione e nei pazienti HIV-infetti trattati è possibile notare un aumento della comparsa di comorbidità, tra le quali le più frequentemente riscontrate sono lesioni al sistema nervoso centrale, ai reni, al tessuto osseo, al fegato e al sistema cardiovascolare. I danni al sistema cardiocircolatorio derivano da una serie di concause virologiche, comportamentali, ambientali e farmacologiche che alterano la parete vascolare, il metabolismo dei lipidi e la regolazione della coagulazione, inducendo la formazione di lesioni strutturali di tipo aterosclerotico che sono alla base dell’aumentata incidenza di infarti, ictus e alterazioni del circolo osservabili nei pazienti HIV-positivi. Dalla recente letteratura è emerso come l’omeostasi del tessuto endoteliale sia regolata anche a livello delle cellule staminali mesenchimali (MSC) presenti nella parete vascolare. Per questo abbiamo voluto analizzare possibili effetti dell’infezione di HIV, delle sue proteine e di alcune molecole antiretrovirali sulla vitalità e sul differenziamento delle MSC purificate dalla parete arteriosa umana. I risultati ottenuti indicano come l’infezione da HIV e l’azione delle proteine gp120 e Tat attivino il meccanismo di apoptosi nelle MSC e una profonda alterazione nel differenziamento verso la filiera adipocitaria e verso quella endoteliale. Inoltre, alcune molecole ad azione antiretrovirale (in particolare specifici inibitori della proteasi virale) sono in grado bloccare il differenziamento delle MSC verso le cellule endoteliali. Dall’insieme di queste osservazioni emergono nuovi meccanismi patogenetici correlati al danno cardiovascolare riscontrato nei pazienti HIV-positivi.HIV-1 infection remains nowadays a major problem of health worldwide. The introduction of a combined antiretroviral therapy (cART) has greatly improved life expectancy of HIV-infected patients. However, cART cannot eradicate the infection and HIV-infected patients show different comorbidities, like central nervous system lesions, osteoporosis, renal and liver dysfunction and cardiovascular pathologies. Cardiovascular damages come from viral mechanisms and pharmacological interactions and their frequency is enhanced in HIV-positive patients. Mesenchymal stem cells (MSC) are very important for endothelial homeostasis, therefore we decided to analyze the effects of HIV and cART in these cells. Our results show that HIV-1 and its proteins gp120 and Tat increase MSC apoptosis and alter MSC differentiation towards endothelial and adipogenic lineages. Moreover, also antiretroviral molecules, in particular protease inhibitors, disrupt MSC differentiation regulation

    Previous, current, and future stereotactic EEG techniques for localising epileptic foci

    Get PDF
    INTRODUCTION: Drug-resistant focal epilepsy presents a significant morbidity burden globally, and epilepsy surgery has been shown to be an effective treatment modality. Therefore, accurate identification of the epileptogenic zone for surgery is crucial, and in those with unclear noninvasive data, stereoencephalography is required. AREAS COVERED: This review covers the history and current practices in the field of intracranial EEG, particularly analyzing how stereotactic image-guidance, robot-assisted navigation, and improved imaging techniques have increased the accuracy, scope, and use of SEEG globally. EXPERT OPINION: We provide a perspective on the future directions in the field, reviewing improvements in predicting electrode bending, image acquisition, machine learning and artificial intelligence, advances in surgical planning and visualization software and hardware. We also see the development of EEG analysis tools based on machine learning algorithms that are likely to work synergistically with neurophysiology experts and improve the efficiency of EEG and SEEG analysis and 3D visualization. Improving computer-assisted planning to minimize manual input from the surgeon, and seamless integration into an ergonomic and adaptive operating theater, incorporating hybrid microscopes, virtual and augmented reality is likely to be a significant area of improvement in the near future

    Orienting to fear under transient focal disruption of the human amygdala

    Get PDF
    Responding to threat is under strong survival pressure, promoting the evolution of systems highly optimised for the task. Though the amygdala is implicated in detecting threat, its role in the action that immediately follows-orienting-remains unclear. Critical to mounting a targeted response, such early action requires speed, accuracy, and resilience optimally achieved through conserved, parsimonious, dedicated systems, insured against neural loss by a parallelized functional organisation. These characteristics tend to conceal the underlying substrate not only from correlative methods but also from focal disruption over time scales long enough for compensatory adaptation to take place. In a study of six patients with intracranial electrodes temporarily implanted for the clinical evaluation of focal epilepsy, here we investigate gaze orienting to fear during focal, transient, unilateral direct electrical disruption of the amygdala. We show that the amygdala is necessary for rapid gaze shifts towards faces presented in the contralateral hemifield regardless of their emotional expression, establishing its functional lateralisation. Behaviourally dissociating the location of presented fear from the direction of the response, we implicate the amygdala not only in detecting contralateral faces, but also in automatically orienting specifically towards fearful ones. This salience-specific role is demonstrated within a drift-diffusion model of action to manifest as an orientation bias towards the location of potential threat. Pixel-wise analysis of target facial morphology reveals scleral exposure as its primary driver, and induced gamma oscillations-obtained from intracranial local field potentials-as its time-locked electrophysiological correlate. The amygdala is here re-conceptualised as a functionally lateralised instrument of early action, reconciling previous conflicting accounts confined to detection, and revealing a neural organisation analogous to the superior colliculus, with which it is phylogenetically kin. Greater clarity on its role has the potential to guide therapeutic resection, still frequently complicated by impairments of cognition and behaviour related to threat, and inform novel focal stimulation techniques for the management of neuropsychiatric conditions

    Predictive models for starting antiseizure medication withdrawal following epilepsy surgery in adults

    Full text link
    More than half of adults with epilepsy undergoing resective epilepsy surgery achieve long-term seizure freedom and might consider withdrawing antiseizure medications (ASMs). We aimed to identify predictors of seizure recurrence after starting postoperative ASM withdrawal and develop and validate predictive models. We performed an international multicentre observational cohort study in nine tertiary epilepsy referral centres. We included 850 adults who started ASM withdrawal following resective epilepsy surgery and were free of seizures other than focal non-motor aware seizures before starting ASM withdrawal. We developed a model predicting recurrent seizures, other than focal non-motor aware seizures, using Cox proportional hazards regression in a derivation cohort (n = 231). Independent predictors of seizure recurrence, other than focal non-motor aware seizures, following the start of ASM withdrawal were focal non motor-aware seizures after surgery and before withdrawal (adjusted hazards ratio [aHR] 5.5, 95% confidence interval [CI] 2.7-11.1), history of focal to bilateral tonic-clonic seizures before surgery (aHR 1.6, 95% CI 0.9-2.8), time from surgery to the start of ASM withdrawal (aHR 0.9, 95% CI 0.8-0.9), and number of ASMs at time of surgery (aHR 1.2, 95% CI 0.9-1.6). Model discrimination showed a concordance statistic of 0.67 (95% CI 0.63-0.71) in the external validation cohorts (n = 500). A secondary model predicting recurrence of any seizures (including focal non-motor aware seizures) was developed and validated in a subgroup that did not have focal non-motor aware seizures before withdrawal (n = 639), showing a concordance statistic of 0.68 (95% CI 0.64-0.72). Calibration plots indicated high agreement of predicted and observed outcomes for both models. We show that simple algorithms, available as graphical nomograms and online tools (predictepilepsy.github.io), can provide probabilities of seizure outcomes after starting postoperative ASMs withdrawal. These multicentre-validated models may assist clinicians when discussing ASM withdrawal after surgery with their patients

    Resection planning in extratemporal epilepsy surgery using 3D multimodality imaging and intraoperative MRI

    Get PDF
    Surgical resection in non-lesional, extratemporal epilepsy, informed by stereoEEG recordings, is challenging. There are no clear borders of resection, and the surgeon is often operating in deep areas of the brain that are difficult to access. We present a technical note where 3D multimodality image integration in EpiNav(TM) is used to build a planned resection model, based on a previous intracranial EEG evaluation. Intraoperative MRI is then used to ensure a complete resection of the planned model. As stereoEEG becomes more common in the presurgical evaluation of epilepsy, these tools will become increasingly important to facilitate targeted cortical resections

    Identifying epileptogenic abnormality by decomposing intracranial EEG and MEG power spectra

    Full text link
    Identifying abnormal electroencephalographic activity is crucial in diagnosis and treatment of epilepsy. Recent studies showed that decomposing brain activity into periodic (oscillatory) and aperiodic (trend across all frequencies) components may illuminate drivers of changes in spectral activity. Using iEEG data from 234 subjects, we constructed a normative map and compared this with a separate cohort of 63 patients with refractory focal epilepsy being considered for neurosurgery. The normative map was computed using three approaches: (i) relative complete band power, (ii) relative band power with the aperiodic component removed (iii) the aperiodic exponent. Corresponding abnormalities were also calculated for each approach in the separate patient cohort. We investigated the spatial profiles of the three approaches, assessed their localizing ability, and replicated our findings in a separate modality using MEG. The normative maps of relative complete band power and relative periodic band power had similar spatial profiles. In the aperiodic normative map, exponent values were highest in the temporal lobe. Abnormality estimated through the complete band power robustly distinguished between good and bad outcome patients. Neither periodic band power nor aperiodic exponent abnormalities distinguished seizure outcome groups. Combining periodic and aperiodic abnormalities improved performance, similar to the complete band power approach. Our findings suggest that sparing cerebral tissue that generates abnormalities in either periodic or aperiodic activity may lead to a poor surgical outcome. Both periodic and aperiodic abnormalities are necessary to distinguish patient outcomes, with neither sufficient in isolation. Future studies could investigate whether periodic or aperiodic abnormalities are affected by the cerebral location or pathology

    Hippocampal theta activity during encoding promotes subsequent associative memory in humans

    Get PDF
    Hippocampal theta oscillations have been implicated in associative memory in humans. However, findings from electrophysiological studies using scalp electroencephalography or magnetoencephalography, and those using intracranial electroencephalography are mixed. Here we asked 10 pre-surgical epilepsy patients undergoing intracranial electroencephalography recording, along with 21 participants undergoing magnetoencephalography recordings, to perform an associative memory task, and examined whether hippocampal theta activity during encoding was predictive of subsequent associative memory performance. Across the intracranial electroencephalography and magnetoencephalography studies, we observed that theta power in the hippocampus increased during encoding, and that this increase differed as a function of subsequent memory, with greater theta activity for pairs that were successfully retrieved in their entirety compared with those that were not remembered. This helps to clarify the role of theta oscillations in associative memory formation in humans, and further, demonstrates that findings in epilepsy patients undergoing intracranial electroencephalography recordings can be extended to healthy participants undergoing magnetoencephalography recordings

    MEG abnormalities and mechanisms of surgical failure in neocortical epilepsy

    Get PDF
    Objective: Epilepsy surgery fails to achieve seizure freedom in 30%–40% of cases. It is not fully understood why some surgeries are unsuccessful. By comparing interictal magnetoencephalography (MEG) band power from patient data to normative maps, which describe healthy spatial and population variability, we identify patient-specific abnormalities relating to surgical failure. We propose three mechanisms contributing to poor surgical outcome: (1) not resecting the epileptogenic abnormalities (mislocalization), (2) failing to remove all epileptogenic abnormalities (partial resection), and (3) insufficiently impacting the overall cortical abnormality. Herein we develop markers of these mechanisms, validating them against patient outcomes. Methods: Resting-state MEG recordings were acquired for 70 healthy controls and 32 patients with refractory neocortical epilepsy. Relative band-power spatial maps were computed using source-localized recordings. Patient and region-specific band-power abnormalities were estimated as the maximum absolute z-score across five frequency bands using healthy data as a baseline. Resected regions were identified using postoperative magnetic resonance imaging (MRI). We hypothesized that our mechanistically interpretable markers would discriminate patients with and without postoperative seizure freedom. Results: Our markers discriminated surgical outcome groups (abnormalities not targeted: area under the curve [AUC] = 0.80, p = .003; partial resection of epileptogenic zone: AUC = 0.68, p = .053; and insufficient cortical abnormality impact: AUC = 0.64, p = .096). Furthermore, 95% of those patients who were not seizure-free had markers of surgical failure for at least one of the three proposed mechanisms. In contrast, of those patients without markers for any mechanism, 80% were ultimately seizure-free. Significance: The mapping of abnormalities across the brain is important for a wide range of neurological conditions. Here we have demonstrated that interictal MEG band-power mapping has merit for the localization of pathology and improving our mechanistic understanding of epilepsy. Our markers for mechanisms of surgical failure could be used in the future to construct predictive models of surgical outcome, aiding clinical teams during patient pre-surgical evaluations

    MEG abnormalities highlight mechanisms of surgical failure in neocortical epilepsy

    Get PDF
    Neocortical epilepsy surgery fails to achieve post-operative seizure freedom in 30-40% of cases. It is not fully understood why surgery in some patients is unsuccessful. Comparing interictal MEG bandpower from patients to normative maps, which describe healthy spatial and population variability, we identify patient specific abnormalities relating to surgical failure. We propose three mechanisms contributing to poor surgical outcome; 1) failure to resect abnormalities, 2) failing to remove all epileptogenic abnormalities, and 3) insufficiently impacting the overall cortical abnormality. We develop markers of these mechanisms, validating them against patient outcomes. Resting-state MEG data were acquired for 70 healthy controls and 32 patients with refractory neocortical epilepsy. Relative bandpower maps were computed using source localised recordings from healthy controls. Patient and region-specific bandpower abnormalities were estimated as the maximum absolute z-score, using healthy data as a baseline. Resected regions were identified from post-operative MRI. We hypothesised our mechanism markers would discriminate patient's post-surgery seizure outcomes. Mechanisms of surgical failure discriminate surgical outcome groups (Abnormalities not targeted: AUC=0.80, Partial resection of the epileptogenic zone: AUC=0.68, Insufficient cortical abnormality impact: AUC=0.64). Leveraging all markers together found that 95% of those who were not seizure free had markers of surgical failure in at least one of the three proposed mechanisms. In contrast, of those patients markers for any mechanism, 80% were seizure-free. Abnormality mapping across the brain is important for a wide range of neurological conditions. Here we demonstrated that interictal MEG bandpower mapping has merit for localising pathology and improving our mechanistic understanding of epilepsy
    • …
    corecore